התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ"

Transcript

1 שיווי משקל תחרותי במשק עם ייצור משפטי הרווחה 1

2 התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפירמותהשונות. לכלפירמהישפונקצייתייצור. וקטור מחירים נזרק לחלל העולם. פירמהתחרותיתמתייחסתלמחיריםכנתוניםוממקסמתאת רווחיה, כתוצאהמתקבליםביקושיםלגורמיייצור, היצעיםלמוצרים ורמותרווח. פרטתחרותימתייחסלמחיריםכנתונים, יוצראמונותלגביהרווחים הצפוייםמהפירמותהשונות, וממקסםאתרווחתובהינתןמגבלת התקציבהנגזרתמהמחירים, הרווחיםבהםהואמאמין, הסל התחילישלוואחוזיהבעלותשלו. וקטורמחיריםמהווהשיווימשקלתחרותיאםאמונותהפרטיםלגבי הרווחיםמתגשמות, וכלהשווקיםמתנקים. 2

3 שיווי משקל תחרותי עם ייצור שיווי משקל תחרותי הינו הקצאה אפשרית ו-וקטור מחירים עבורם: תכנית הייצור של כל יצרן ממקסמת את רווחיו בהינתן המחירים. הסל אותו מקבל כל פרט ממקסם את תועלתו בהינתן קו התקציבהנובעמהסלהתחילי, הרווחיםהמחולקים (עלפי אחוזיהבעלות) ווקטורהמחירים. 3

4 הערות: שיווי משקל תחרותי עם ייצור הקצאה אפשרית מבטאת ניקוי שווקים. המקסום בהינתן המחירים מבטא התנהגות תחרותית. חוק וולראס ממשיך להתקיים. הפירמות, ולאחושביםאיךמכירותלהן הפרטיםלאמתערביםבניהול אוקניותמהןמשפיעיםעלהרווחים. כולםמעונייניםבמקסוםרווחים. מקסוםרווחיםאינוחזותהכולכשישתחרותלאמשוכללת, אואי וודאות. איןכאןמסחרבמניות. אםהיהמסחר, מחירהמניההיהשווהלרווחי הפירמה. 4

5 כיצד מחשבים ש"מ תחרותי עם ייצור נתונים פונקציות הייצור של הפירמות, העדפות, סלים תחיליים ותיקי מניות של הפרטים. מחשביםאתפונקציותהביקוש (לגורמיייצור), מוצרים) ופונקציותהרווחשלכלפירמה. (של פונקציות ההיצע מציביםאתרווחיהפירמותלתוךמגבלותהתקציבשלהפרטים, ומחשבים אתפונקציותהביקוש (למוצרים) וההיצע (שלגורמיייצור) שלהפרטים. מנקיםאתהשווקיםעלידיפתרוןמערכתמשוואות (n משוואות, n מספר המוצריםוגורמיהייצור, עםn נעלמיםשהםהמחירים) המתקבלת מהשוואתהביקושהמצרפילכלמוצרוגורםייצורלכמותהמוצעתשלו. כמו מקודםמשוואותאילואינןבלתיתלויות. הקצאתשיוויהמשקלמתקבלתמחישובתכניותהייצורשלהפירמות והביקושיםשלהפרטים, עבוריחסיהמחיריםשחושבו. הסיבהל "דרגתהחופש" בקביעתהמחיריםהיאההומוגניותמדרגהאפס שלהביקושיםוההיצעים, וההומוגניותמדרגהאחדשלהרווחים. 5

6 דוגמה - רובינזון קרוזו בכלכלהישפרטאחד (רובינזון), פירמהאחת (קרוזובע"מ), ושנימוצרים, פנאי (L) ותצרוכת (Y). הפנאיהינומוצרצריכהעבורהפרטוגורםייצורעבורהפירמה. לרובינזוןיש 24 שעותפנאיו פונקצייתתועלת.U(L,Y) - 100% ממניות הפירמה. העדפותיו ניתנות על ידי (L P לקרוזו יש פונקצית ייצור ) P y=f(l (נסמן את הפנאי איתו מייצרים ב בהינתן מחירי השוק ) Y ) L, הפירמה ממקסמת את רווחיה, π. רובינזוןהצרכןמצפהלקבלאתכלרווחיהפירמה, ובוחראתכמותהפנאי (כלומר כמהשעותלעבוד) והתצרוכתשימקסמואתתועלתו. ניתןלומרשהסלהתחילילו מצפהרובינזוןהינו ) Y (24,exec. rofit/p 6

7 בעיית היצרן -1 היצרן רוצה למקסם את רווחיו ופותר לכן את הבעיה הבאה: Max P Y F(L P )-P L L P P Y MP L =P L כךמתקבלתנאיהסדרהראשוןהבא :.(L,Y) כעת, נציג זאת במישור אנורוציםלתארבמישורזהאתמיקוםנקודתהייצור. כדילעשותזאת בצורהמדוייקת, שגםתעזורלנולאחדאתשרטוטבעייתהיצרןובעיית הצרכןלשרטוטאחד, נשרטטתחילהאתעקומתהתמורהבמישורזה. 7 שימולבשהיצרןוהצרכןאינםמודעיםלקיומהשלעקומתהתמורה (היצרןלמשל, לאיודעשלפרטיש 24 שעותפנאיאולמעשהכמה פרטיםישבכלכלה, והצרכןלאמכיראתפונקציתהייצור.).

8 בעיית היצרן - 2 נקודתהייצורבכלכלהזוהיאעלעקומתהתמורהמכיווןשישרקגורם ייצוראחדלכןכלהקצאהשלוהינהבדרךכללעלעקומתהתמורה. בהמשךנראהשנקודתהייצורהתחרותית, גםכשישיותרגורמיייצור ויצרניםתהיהעלעקומתהתמורה. עקומתהתמורהניתנתעלידיהמשוואה.Y=f(24-L) היאמתחילה מהנקודה (24,0) ומסתיימתבנקודה ((24)f,0). עלמנתלתאראתתכניתהייצורבהבחרהיצרןנמדודאת L P עלידי תנועהימינהמ 24=L ואזאת נראהעלעקומתהתמורה. Y P וניתן להציג את הפתרון גראפית באופן הבא: 8

9 קרוזו בע"מ y עקומת התמורה y = f ( 24 L) Y P * f '( L ) = P L Y P/ Y 9 L* L P * 24

10 הסבר לתיאור הרווח בשקף הקודם P= Y Y P *- L L P *= Y Y P *- L (24-L*) הרווח הינו: לכןנקודתהייצור *) P (L P *,Y אולמעשה (L*,Y*) מקיימת: L L* + Y Y* =24 L + P לאורזאתמשוואתהמשיקבנקודהזו (במונחיL ו Y) הינה: L L+ Y Y=24 L + P (שיפועהמשיקהינו ( L / Y הצבתL=24 גוררתשה Y בנקודהזוהינו.P/ Y 10

11 בעיית הצרכן קוהתקציבשהצרכןרואההינו (נסמןב- Πאתהרווחאותומצפה e לקבלהצרכן): P L L+P Y Y=P L 24+Π e Π e שימו לב שהצרכן מתייחס ל כנתון, - שיקבל ללא תלות בבחירת הפנאי והתצרוכת שלו. הצרכן פותר: כלומר הוא מאמין שזה הרווח Max U(L,Y) S.T. 11 P L L+P Y Y=P L 24+Π e כךמתקבלתנאיהסדרהראשון : Y MU L /MU Y =P L /P וניתןלהציגאתהפתרוןגראפיתבאופןהבא:

12 רובינזון הצרכן y קו תקציב שיפוע L / Y Y C * סל תחילי π e /P Y 12 L C * 24

13 שיווי משקל תחרותי בשיווימשקלהשווקיםחייביםלהתנקותכלומרצריך להתקייםכי: 24-L * C=L * P,Y C* =Y * P וכןכיהרווחים להםמצפההצרכןהםאכןהרווחיםבפועל, כלומר.Π e =P Y Y * P-P L L * P לאורזאתניתןלראותכימשוואתה"משיק" משקף היצרןזההלמשוואתקוהתקציבמשקףהצרכן, ו"איחוד" שלשניהשקפיםנותןאתהתמונההבאה: 13

14 שווי משקל תחרותי בכלכלת רובינזון קרוזו y Y C * Y P * סל תחילי π/p Y 14 L C * L P *

15 דוגמה מספרית רובינזון קרוזו Y=L P 0.5 פונקצית היצור של הפירמה הינה: לצרכן יש 24 שעות פנאי ו 100% ממניות הפירמה. העדפותיו ניתנות על ידי: U(L,Y)=L Y נסמןאתמחיר L (כלומראתשכרהעבודה) P L ואתמחירהתצרוכתב Y.P ב 15

16 בעיית היצרן היצרן ממקסם את רווחיו ופותר: 0.5 מכאן מתקבל: = לכן פונקצית הביקוש לעבודה של היצרן הינה: 2 (, )= 2 4 (, )= 2 2 (, )= 2 פונקצית ההיצע לתצרוכת הינה: = 4 הרווח הינו: 16

17 הצרכן פותר: בעיית הצרכן Max LY S.T. P L L+P Y Y=P L 24+Π e לכן פונקצית הביקוש לפנאי של הצרכן הינה: (, )= פונקצית הביקוש לתצרוכת של הצרכן הינה: 17 (, )=

18 שיווימשקלתחרותי המשוואה שמנקה את שוק ה L הינה: (, )+ (, )=24 הצבת הביטויים שמצאנו (כולל הביטוי עבור הרווח) גוררת: 24 +( 2 4 ) = =24 כלומר: לכן שיווי משקל תחרותי ניתן על ידי יחס מחירים זה וההקצאה (מתקבלת מחישוב ערכי כל הביקושים וההיצעים שמצאנו עבור יחס מחירים זה): =8 0.5 C L P =8,Y P =8 0.5,L C =16,Y 18

19 דוגמה נוספת של שיווי משקל תחרותי עם ייצור 1 x1, y1) U ( = x y במשק ישנם שני צרכנים : צרכן 1 ; w 1 =(10,0) ; θ 1 =0.4 צרכן 2 U 2 ( x2, y2) = ln( x2) + y2; w 2=(15,0 ); θ 2=0. 6 הפירמה : 0.5. y = 10x מייצרת y באמצעות x על ידי: 19

20 שיווי משקל תחרותי עם ייצור - 1 שיווי משקל תחרותי : מחירים ) ( x, y ו הקצאה אפשרית (כמויות מיוצרות ומועסקותעל ידי הפירמה, כמויות הנצרכות על ידי שני הצרכנים ( כך שמתקיימים התנאים הבאים : 1) בהקצאה זו הפירמה ממקסמת את רווחיה בהינתן המחירים והטכנולוגיה שלה (פונקציית הייצור שלה). 2) בהקצאה זו שני הפרטים ממקסמים את תועלתם בהינתן מגבלת התקציב הנגזרת מהמחירים ורווחי הפירמה. שימו לב שהדרישה שההקצאה אפשרית גוררת למעשה כי השווקים מתנקים. מכיוון שבעיות הפרטים והפירמה אינן משתנות כאשר כל המחירים מוכפלים בקבוע חיובי נבחר בלי הגבלת הכלליות = 1. x = ונסמן, y 20

21 שיווי משקל תחרותי עם ייצור - 2 בעיית הפירמה : 21 π dπ dx = max = x 10 x 0.5 x תנאי סדר ראשון: 0 5 x 0. 5 כלומר הפירמה משווה את ערך התפוקה השולית של היצור, למחירו. מתנאי סדר ראשון הנ"ל נקבל: גורם.x זהו ביקוש הפירמה לגורם יצור, x (,1) = x = 25 2 נציב את שמצאנו בפונקציית היצור, ונקבל את פונקציית ההיצע של הפירמה לתפוקה y: 50. y (,1) = נציב חזרה את הגדלים x, y ונקבל את פונקציית הרווח של 25 הפירמה : =,1).π ( בפונקציית המטרה,

22 שיווי משקל תחרותי עם ייצור - 3 בעיית צרכן 1: 1 max x y 1, 1 x y בכפוף למגבלה : x 1+ y 1 = כאשר המחובר השני באגף ימין הינו חלקו של צרכן ברווחי הפירמה. מבעיית צרכן זו נגזרת מערכת הביקושים הבאה : x (,1) = 4 10, y 1 3(10 + (,1) = 4 10 ) 22

23 שיווי משקל תחרותי עם ייצור , y בעיית צרכן 2: maxln( x x ) + בכפוף למגבלה : 15 x2 + y2 =15 + כאשר המחובר השני באגף ימין הינו חלקו של צרכן ברווחי הפירמה. מבעיית צרכן זו נגזרת מערכת הביקושים הבאה : x 1 (,1) =, y2 15 (,1) = y 2 1

24 שיווי משקל תחרותי עם ייצור - 5 עד כה ראינו כיצד כל יחידה כלכלית מקסמה את פונקציית המטרה שלה בהינתן המחירים. השלב הבא יהיה לפתור עבור המחיר שינקה את השווקים. תנאי שיווי משקל בשוק x: x1 (,1) + x 2 (,1) + x (,1) = = 0 = כלומר מחירי שיווי משקל הינם : x x 1 2. (, ) = ( 1.128,1) x y והקצאת שיווי משקל הינה : = , = , y1 = y = x = , y = רווחי הפירמה הינם :.164 = 22.π 2 24

25 שיווי משקל תחרותי עם ייצור - 6 ראינו כי המחיר שניקה את שוק ה - x, מנקה גם את שוק y- זהו חוק וולראס. כמובן שהיינו יכולים באופן חילופי לרשום את משוואת שיווי המשקל בשוק y, וממנה לפתור עבור P. במקרה זה : y (,1) + y = (,1) = y (,1) = 0 =

26 דוגמא אי-קיום שיווי משקל תחרותי הכלכלה: פרט 1 :,U 1 (X 1,Y 1 )=X 12 +Y 1 סל תחילי (10,10) 2 פרט 2 :, U 2 (X 2,Y 2 )=X 2 Y 2 סלתחילי (5,5) את הביקושים של כל פרט ונראה שאין יחס מחירים נחשב עבורומתנקיםהשווקים. 26

27 דוגמא אי-קיום שיווי משקל תחרותי פתרון בעייתו של פרט 1: 27

28 דוגמה אי קיום שיווי משקל - הניתוחהגראפישלבעייתהפרטהראשוןהראהכיפונקציית הביקושל X שלוהינה (אנובוחריםב X כנומרר): X 1 (1,P)=0 if P<1 X 1 (1,P)=10+10P if P>1 X 1 (1,P)= 20 or 0 if P=1 פונקצייתהביקושל X שלהפרטהשניניתנתעלידי: X 2 (1,P)=0.5(5+5P) 28

29 29 אי קיום שיווי משקל - כעת נחפש מחיר שיווי משקל. אםמחירשיווימשקלקטןמ 1, חייבלהתקיים: אוP=5. 15=(5+5P)0.5 כלומראיןש"מעם 1>P. אםמחירש"מגדולמ 1, חייבלהתקיים: אוP= P P=15 כלומראיןש"מעם 1<P. דוגמה אםP=1 אזיכאשרהפרטהראשוןמבקש 20 ישעודףביקושל X, ואםהואמבקש 0 ישעודףהיצעל X כיפרטשנימבקש 5 יחידותX. כלומר בכלכלה זו לא קיים שיווי משקל תחרותי. מה ה"סיבה"? העדפותיו של פרט ראשון אינן קמורות.

30 ש"מ סיכום למדנולחשבאתההקצאהשמושגתע"ימנגנון השוק. יתרוןמרכזישלמנגנוןזה (עלפניתכנוןמרכזי) הואביזורההחלטות (כלפרטזקוקל"מעט" קבלת לצורך השוק) (מחירי חיצונית אינפורמציה ההחלטות. פשטותבאיסוףהאינפורמציה איןצורךבתמריציםלגילויאמיתישלהמידעהפרטי. האםהתוצאהשמשיגהשוקטובהבאותהמידה? (האםיש "ידנעלמה") 30

31 משפטי הרווחה 31

32 משפטי הרווחה משפטיהרווחהמקשריםביןהגישההנורמטיבית (הגדרה ואפיוןשלהקצאותיעילותפרטו) והגישההפוזיטיבית (הגדרהואפיוןשלשיווימשקלתחרותי). משפטהרווחההראשון מראהתחתתנאיםחלשיםמאוד כיכל ((למעשהמספיקהמונוטוניותשלההעדפות) הקצאתשיווימשקלתחרותיהינההקצאהפארטויעילה. משפטהרווחההשני (אותולאנוכיח) מראהתחתתנאים מגביליםיותר (בעיקרהעדפותוטכנולוגיותשמתנהגות יפה) כיכלהקצאהפארטויעילהניתנתלקבלהכשיווי משקלתחרותילאחרחלוקהמתאימהשלהרכושהתחילי והבעלותעלהפירמות. 32

33 משפטי הרווחה משפטהרווחההראשוןמהווה התחרותי (ראואתה"אזהרה" "צידוק" לשימושבמנגנון בהמשך). משפטהרווחההשנימראהכיאםאנומוטרדיםמחלוקת הרכושהנובעתמשיווימשקלתחרותיומעונייניםלהגיע לעשות ניתן "שיוויונית") יותר (אולי יעילה אחרת לחלוקה זאתעלידי "מיסיגולגולת" (מסיםאחריםעשויים "לעוות" כפישנראהבנושאהבא). 33

34 משפטי הרווחה - מגבלות משפטיהרווחהבדרךכללמופריםכאשריש "כשלי שוק": כוחשוק אינפורמציהאסימטרית השפעותחיצוניות מוצריםציבוריים זאת ברור כי יש להתייחס בזהירות רבה לטענה כי משפטי לאור הרווחהמראיםששיווימשקלתחרותימביאלהקצאהיעילהפרטו ואיןשוםמקוםלהתערבותבמנגנוןהשוקהחופשי. בנוסף: משפטהרווחההראשוןאינואומרדברלגביעצםקיומושלשיווימשקלתחרותי, כלומר יתכןוישכלכלותעבורןהמשפטמתקייםמהסיבההפשוטהשאיןבהןשוםהקצאתשיווי משקלתחרותי. (כדילהבטיחקיוםשלש"מתחרותיצריךלהניחביןהשארכיההעדפותמתנהגותיפהכך שלמעשההכלכלותעבורןמובטחכימשפטהרווחההראשוןמתקייםבאופן "לאריק" הן הכלכלותה"קמורות".) 34

35 משפט הרווחה הראשון - הוכחה הקצאת שיווי משקל תחרותי היא פארטו יעילה. (הנחה יחידה: העדפות הפרטים מונוטוניות עולות) את משפט הרווחה הראשון ניתן להוכיח באופן חלקי או באופן מלא. כל המלאה מראה שש"מ הינו פארטו יעיל מעצם הגדרתו: ההוכחה מקבלהחלטותממקסםבהנתןהמחיריםוהמגבלות + השווקים מתנקים. ההוכחההחלקיתמשתמשתבתנאיםהמאפייניםאתהש"מ (התאמתשעוריתחלופהשולייםלמחירים) ומראהשהםזהים לתנאיםהמאפייניםפארטויעילות (התאמתשעוריהתחלופהזה לזה). חסרוןההוכחההחלקיתהואבכךשהיאמתעלמתמתנאיסדרשני, ומחייבת קיוםנגזרות. היתרוןהואשהיאמקבילהלדרךהחישוב שלש"מושלהקצאהפארטויעילה. 35

36 משפט הרווחה הראשון הוכחה "מלאה" משתמשים בשתי העובדות הבאות: אםקייםסלהעדיףממשעלהסלבובחרהפרטבשיוויהמשקלהתחרותי אזיסלזהחייבלעלותממשיותרמהסלבובחרהפרט. אם קייםסלהעדיף/אדישעלהסלבובחרהפרטבשיוויהמשקלהתחרותי אזיסלזהחייבלעלותלאפחותמהסלבובחרהפרט. נוכיחאתהמשפטעבורכלכלתחליפיןעםשניפרטיםבעלי העדפותמונוטוניותעולותממש. (ההכללהל- n פרטיםמיידית, וההכללהלכלכלותעםייצורפשוטהאףהיא.) 36

37 משפט הרווחה הראשון הוכחה תיאורהסביבה: נתונהכלכלהעםשניפרטים. לפרטהראשוןהעדפותהניתנותעלידי ) 1 u 1 (x 1,y וסלתחילי ) y1.(w x1,w לפרטהשניהעדפותהניתנותעלידי ) 2 u 2 (x 2,y וסלתחילי ) y2.(w x2,w "מלאה" הניחוכיהקצאתשיווימשקלתחרותיבכלכלהזונתונהעלידי ) 1,y* (x* 1 לפרט 1,(,y* 2 (x* 2 לפרט 2, ווקטורהמחירים ) y.(* x,* 37 נניחעלדרךהשלילה כיקיימתהקצאהאפשריתהשולטתפארטועלהקצאתשיווימשקל תחרותיזו: כלומרקיימתהקצאה ) 1,y (x 1 לפרט 1, ) 2,y (x 2 לפרט 2 כךש: y 1 +y 2 =w y1 +w y2 x 1 +x 2 =w x1 +w x2 ובליהגבלתהכלליותנניחכי : u 2 (x 2,y 2 ) u 2 (x* 2,y* 2 ) u 1 (x 1,y 1 )>u 1 (x* 1,y* 1 ) איהשיוויוןהראשוןגוררכי: * x x 1 +* y y 1 >* x w x1 +* y w y1 איהשיוויוןהשניגוררכי : * x x 2 +* y y 2 * x w x2 +* y w y (אםהסל ) 2,y (x 2 היהעולהממשפחות, ניתןהיהלקנותסלהגדוליותרבכלרכיב, ולכןעדיף ממשעלהסל ) 2,y (x 2 ובגללטרנזיטיביותשלהעדפותעדיףגםעלהסל ) 2,y*,(x* 2 וזו סתירהלכךשהקצאת (*) מהווהשיווימשקלתחרותי.

38 משפט הרווחה הראשון הוכחה "מלאה" חיבור של שני האי שוויונים גורר כי: * x (x 1 +x 2 )+* y (y 1 +y 2 )>* x (w x1 +w x2 )+* y (w y1 +w y2 ) וזו סתירה מאחר ושתי ההקצאות אפשריות. לא ניתן למצוא הקצאה אפשרית השולטת פארטו על ההקצאה שלשיווי משקל לכן תחרותי, כלומרהקצאתשיווימשקלתחרותיהינהיעילה פרטו. במעברלכלכלותעםייצורשיטתההוכחהדומה. הסתירהמגיעהמכך שאםהקצאת שיווימשקלתחרותיאינהיעילהאזיניתןלמצואתוכניות ייצוראפשריותשהינן רווחיותיותרעבורהיצרנים, בסתירהלכך שיצרניםממקסמיםאתרווחיהםבשיווי משקלתחרותי. 38

39 משפט הרווחה הראשון הוכחה "חלקית" נתונה כלכלה עם שני מוצרים, שני גורמי ייצור, שני יצרנים ושני צרכנים. התנאים מסדר ראשון המאפיינים הקצאה תחרותית הינם: P X F K =P K (מקסוםרווחיםשליצרן P X F L =P L (x P Y G K =P K (מקסוםרווחיםשליצרן P Y G L =P L (y MRS 1 =U 1X /U 1Y =P X /P Y MRS 2 =U 2x /U 2Y =P X /P Y (מקסום תועלת של פרט 1) (מקסום תועלת של פרט 2) 39 מארבעתהמשוואותהראשונותמתקבלכי:,F K /F L =G K /G L כלומר TRS Y =TRS X (יעילותבייצור) משתיהמשוואותהאחרונותמתקבלכי:,U 1X /U 1Y =U 2X /U 2Y כלומר MRS 1 =MRS 2 (יעילותבצריכה) מהמשוואההראשונהוהשלישיתמתקבלכי: RPT=G K /F K =P X /P Y ולכןמתקבלכי : K,U 1X /U 1Y =G K /F כלומרRPT=MRS (ייצורמותאםלצריכה)

40 משפטי הרווחה - הערות נתון חשוב מאוד בו השתמשנו הינו שבשיווי משקל תחרותי כל היחידות הכלכליות רואות בשוליים אותם מחירים. התערבות ממשלה התנהגות לא תחרותית או סובסידיות) (מיסים (מונופול או מונופסון) מביאים לפערים בין המחירים השוליים לפניהם עומדות היחידות הכלכליות ולהפרת התנאים מסדר ראשון לפארטו יעילות. 40

41 דוגמה - תרחיש ה "קרקע" הניחו כי ישנם 2 מוצרים x ו y, ושני פרטים עם העדפות U 1 ו 2 U. למשק יש כמות תחילית X של x וניתן לייצר את y באמצעות x לפי פונקציית הייצור :.y=g(x ) התנאים מסדר ראשון המאפיינים הקצאה פארטו יעילה הינם : 41 u u u u 1x 1y 1x 1y u = u 2x 2 y ( eff. cons., equal MRS) = g' ( rod. cons. matchu, MRS ( roduction is always efficient) = RPT)

42 דוגמה - תרחיש ה "קרקע" התנאים מסדר ראשון המתקיימים בשיווי משקל תחרותי הינם : u u P 1x 1y = g ' = x y y x ; u u 2x 2 y מזוג המשוואות הראשונות מתקבלת יעילות u u 1 x = 1y u u 2x 2 y = x y בצריכה: מהמשוואה השלישית מתקבל כי: g'= x / y u u 1 x = g 1y לכן: ' התאמת הצריכה לייצור. 42

שווי משקל תחרותי עם ייצור

שווי משקל תחרותי עם ייצור שווי משקל תחרותי עם ייצור 1 התנהגות היצרן )תזכורת מחירים ב'( ma π = p -p s.t. = ƒ)( ma p ƒ)(-p בעיית הפירמה: או: 2 1 3 התנהגות היצרן )תזכורת מחירים ב'( * רווח במונחי p Slopes p * f ' p p f () תמונת ראי

Διαβάστε περισσότερα

c>150 c<50 50<c< <c<150

c>150 c<50 50<c< <c<150 מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינד

מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינד מונופול 1 מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינדקס של לרנר, MARK UP PRICING בעיית המונופול

Διαβάστε περισσότερα

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03 15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת

Διαβάστε περισσότερα

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים

Διαβάστε περισσότερα

פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע

פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע הוצאות בטווח הקצר והארוך טווח קצר חלק מגורמי הייצור קבועים טווח ארוך כל גורמי הייצור משתנים בטווח הקצר ישנן הוצאות שאינן תלויות ברמת התפוקה ונובעות

Διαβάστε περισσότερα

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

Joseph Louis Francois Bertrand,

Joseph Louis Francois Bertrand, תחרותביןמעטים ברטראנד קורנו שוב... תחרותמונופוליסטית עקומתביקוששבורה תחרותמיקום-מחיר הוטלינג קוישר סאלופ מעגל Joseh Louis Francois Bertrand 8-900 מודל ברטראנד תיאורהסביבה ההנחות מושגהפתרון חישובהפתרון

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית

הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע וביקוש הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים תצרוכת על

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

הכנסה במוצרים היצע העבודה ופנאי

הכנסה במוצרים היצע העבודה ופנאי הכנסה במוצרים היצע העבודה ופנאי נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים דיון קצר האם מודל ההכנסה במוצרים סביר?

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור

אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור 1 2 בעיית הביטוח פתרון אלגברי ב "מישור העושר" בעיית המקסימיזציהשהפרט פותר הינה : Max p 1u(10 -γk+k)+p 2u(40 -γk) K והשוואה תנאי הסדר הראשון מתקבל מגזירה

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

תורת המחירים א תשע"ב

תורת המחירים א תשעב תורת המחירים א תשע"ב חוברת תרגילים הקמפוס האקדמי אחווה מרצה: ד"ר ניר דגן התרגילים בחוברת נכתבו ע"י פרופ' דוד וטשטיין ומרצים נוספים מהקמפוס האקדמי אחווה ואוניברסיטת בן-גוריון ו- תרגיל 1 העדפות הצרכן ומגבלת

Διαβάστε περισσότερα

עקומת שווה עליות איזוקוסט Isocost

עקומת שווה עליות איזוקוסט Isocost עקומת שווה עליות איזוקוסט Isocost כפי שראינו בפרק הקודם, אומנם נוכל לראות את הבחירה האלטרנטיבית של היצרן אך לא נוכל לקבל תשובה מהו הייצור האופטימאלי של היצרן. ישנם גורמים טכניים רבים מידי כדי לקבל החלטה

Διαβάστε περισσότερα

ויעילות הוצאת * החומר * 1

ויעילות הוצאת * החומר * 1 ויעילות מוצרים ציבוריים פרופסור שמואל ניצן הוצאת העדפה ובחירה חברתית", בספר: " על פרק טט' ברובו מבוסס חומר זהה *.2007 האוניברסיטה הפתוחה, הפתוחה) הזכויות שמורות לאונילאוניברסיטה (כל הקדמה: נושאי הדיון

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

תרגיל 1 נתונים = 2 ו- = 1

תרגיל 1 נתונים = 2 ו- = 1 תורת המחירים א' 213-66 תרגיל 1 מרחב האפשרויות Y ו- X צרכן מוציא את כל הכנסתו הכספית ) 200 = I )על שני מוצרים בלבד,, ורואה לפניו מחירים. P Y P X נתונים = 2 ו- = 1 תאר את מרחב אפשרויות הצריכה של הצרכן בכל

Διαβάστε περισσότερα

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X =

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X = 4. < > בניתוח של הטווח הארוך נניח שהפירמה מייצרת מוצר באמצעות שני גורמי יצור משתנים: עבודה ומכונות. נגדיר את פונ קצית הייצור: התפוקה המקסימאלית שניתן לייצור באמצעות צירוף, של תשומות: פונקצית הייצור בטווח

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

פולינומים אורתוגונליים

פולינומים אורתוגונליים פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605)

אוסף תרגילים בקורס מבוא לכלכלה למהנדסים (51605) .1 אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605) חלק א' תרגילי כיתה עקומת התמורה, הוצאה אלטרנטיבית 1.1 במשק "המילניום השלישי" קיימים שלושה סוגי פועלים. סוג א' (מסוג זה ישנם פועלים) שכל אחד מהם מסוגל

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

הפתק מבוא לכלכלה סיכום הקורס. ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן:

הפתק מבוא לכלכלה סיכום הקורס.  ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן: 94591 מבוא לכלכלה, סיכום הקורס, עמוד 1 מתוך 82 הפתק www.hapetek.co.il מבוא לכלכלה 94591 סיכום הקורס ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן: avi.bandel@gmail.com 94591 מבוא לכלכלה, סיכום

Διαβάστε περισσότερα

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r ל' ' פונקציות פרימיטיביות רקורסיביות חישוביות הרצאה 4 האם כל פונקציה מלאה היא פרימיטיבית רקורסיבית? לא נראה שתי הוכחות: פונקציות רקורסיביות (המשך) זיהוי שפות ע''י מכונות טיורינג הוכחה קיומית: קיימות פונקציות

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

מבוא לכלכלה מיקרו כלכלה

מבוא לכלכלה מיקרו כלכלה חלק 1 מבוא לכלכלה מיקרו כלכלה סיכום החומר בקורס "מבוא לכלכלה" בטכניון (חלק 1) סיכם: אור גלעד המרצה: ד"ר מירה ברון מסמך זה הורד מהאתר. אין להפיץ מסמך זה במדיה כלשהי, ללא אישור מפורש מאת המחבר. מחברי המסמך

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה

Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה נושאים 1. מבוא 2. היצע קיינסיאני וקלאסי מאקרו בב' דן בן-דוד אוניברסיטת תל-אביב 3. המודל הקיינסיאני א. שוק המוצרים ב. שוק הכסף ג. מודל S-L במשק סגור ד. מודל S-L במשק פתוח שער חליפין נייד או קבוע עם או בלי

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

רשימת בעיות בסיבוכיות

רשימת בעיות בסיבוכיות ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו

Διαβάστε περισσότερα

מבני נתונים ויעילות אלגוריתמים

מבני נתונים ויעילות אלגוריתמים מבני נתונים ויעילות אלגוריתמים (8..05). טענה אודות סדר גודל. log טענה: מתקיים Θ(log) (!) = הוכחה: ברור שמתקיים: 3 4... 4 4 4... 43 פעמים במילים אחרות:! נוציא לוגריתם משני האגפים: log(!) log( ) log(a b

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

תרגול 1: מד"ר 1 הפרדת משתנים משוואות,, 0 הומוגניות משוואות מציבים לינאריות כאשר 0 המשוואה הומוגנית של כפונקציה של בלבד. משוואות ברנולי מסמנים או:

תרגול 1: מדר 1 הפרדת משתנים משוואות,, 0 הומוגניות משוואות מציבים לינאריות כאשר 0 המשוואה הומוגנית של כפונקציה של בלבד. משוואות ברנולי מסמנים או: אריאל סטולרמן 1 סיכומי תרגולים: סיכומים במד"ר 1 סמסטר קיץ 2009 (פרופ' ודים אוסטפנקו) תרגול 1: סוגים של מד"ר ודרכי פתרון: חשוב: לשים לב לקבוע c המצורף כתוצאה מאינטגרציה דרך פתרון שיטה צורה הפרדת משתנים

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

xpy xry & ~yrx xiy xry & yrx

xpy xry & ~yrx xiy xry & yrx האם קיים קשר בין העדפה ובחירה? ההנחה שקיים קשר הדוק בין מערכת ההעדפות של היחידה הכלכלית ובין התנהגותה המתבטאת בבחירה בין האפשרויות העומדות בפניה מקובלת מאד בתיאוריה הכלכלית. למעשה הנחת העבודה הבלעדית בניתוח

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

מבני נתונים ואלגוריתמים תרגול #11

מבני נתונים ואלגוריתמים תרגול #11 מבני נתונים ואלגוריתמים תרגול # התאמת מחרוזות סימונים והגדרות: P[,,m] כך Σ * טקסט T )מערך של תווים( באורך T[,,n] n ותבנית P באורך m ש.m n התווים של P ו T נלקחים מאלפבית סופי Σ. לדוגמא: {a,b,,z},{,}=σ.

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי הנושא: פתרון בעיות באמצעות שיטת הנסיגה הוכן ע"י: תמר זמיר תקציר: בחומר מוגדר המושג רקורסיה

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

הרצאות בבקרה לא-לינארית (046196) פרק 7.

הרצאות בבקרה לא-לינארית (046196) פרק 7. הרצאות בבקרה לא-לינארית (04696) מאת פרופ' נחום שימקין טכניון הפקולטה להנדסת חשמל חורף תשס"ה פרק 7. יציבות מוחלטת של מערכות משוב נעבור עתה לדיון ביציבות של מערכת משוב מסוג מסוים הכוללת מערכת לינארית ורכיב

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

אלגו מתקדם ביוני 2012 מרצה: יאיר בר טל בודק: אורן בקר. איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך.

אלגו מתקדם ביוני 2012 מרצה: יאיר בר טל בודק: אורן בקר. איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך. אלגו מתקדם 67824 11 ביוני 2012 מרצה: יאיר בר טל בודק: אורן בקר איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

תקצרי הרצאות של פרופ. רועי משולם

תקצרי הרצאות של פרופ. רועי משולם - 240491 מתמטיקה למדעי החיים 1 תקצרי הרצאות של פרופ רועי משולם הרצאה 2 מושגים בגיאומטרית המישור והמרחב 1 u u ( ) המישור האוקלידי: R} R { נקודת המישור נקראת ) ( נקראות וקטורים אורך הוקטור: ) ( נתון ע"י

Διαβάστε περισσότερα

b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית.

b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית. תרגול - IV מודלים עם הנחה לכמויות הנחה על כל הכמות: המשמעות: בהתאם לגודל המנה, נקבע מחיר ליחידה c, ובמחיר זה נרכשת כל הכמות. TC מבחינה גרפית: b b b תחום תחום תחום c > c > c רציונל הפתרון: לכל תחום מחשבים

Διαβάστε περισσότερα

מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב

מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב מערך תרגיל קורס 89-33 סמסטר ב תשע ה בחשבון אינפיניטסימלי למדעי המחשב יוני 05, גרסה 0.9 מבוא נתחיל עם כמה דגשים: דף הקורס נמצא באתר.www.math-wiki.com שאלות בנוגע לחומר הלימודי מומלץ לשאול בדף השיחה באתר

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα